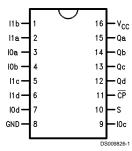


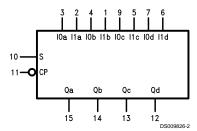
DM74LS298

Quad 2-Port Register Multiplexer with Storage

General Description


The 'LS298 is a quad 2-port register. It is the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronous with the HIGH-to-LOW transition of the Clock input.

Features


- Select from two data sources
- Fully edge-triggered operation
- Typical power dissipation of 65 mW

Connection Diagram

Dual-In-Line Package

Logic Symbol

V_{CC} = Pin 16 GND = Pin 8

Order Number DM54LS298J, DM54LS298W, DM74LS298M or DM74LS298N See Package Number J16A, N16E or W16A

Pin	n Description			
Names				
S	Common Select Inputs			
CP	Clock Pulse Input (Active Falling Edge)			
10 _a , 10 _d	Source 0 Data Inputs			
I1 _a , I1 _d	Source 1 Data Inputs			
Q_a, Q_d	a, Q _d Flip-Flip Outputs			

Absolute Maximum Ratings (Note 1)

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS298			DM74LS298			Units
		Min	Nom	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H)	Setup Time HIGH or LOW	25			25			ns
t _s (L)	S to CP	25			25			
t _h (H)	Hold Time HIGH or LOW	0			0			ns
t _h (L)	S to \overline{CP}	0			0			
t _s (H)	Setup Time HIGH or LOW	15			15			ns
t _s (L)	I0 _x or I1 _x to CP	15			15			
t _h (H)	Hold Time HIGH or LOW	5.0			5.0			ns
t _h (L)	I0 _x or I1 _x to \overline{CP}	5.0			5.0			
t _w (H)	CP Pulse Width HIGH or LOW	20			20			ns
t _w (L)		20			20			

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter Conditions		Min	Тур	Max	Units	
					(Note 2)		
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max, V _I = 7V	DM74			0.1	mA
	Input Voltage	V _I = 10V	DM54				
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V	,			20	μΑ
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.4V				-0.4	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	$V_{CC} = Max, I0_n, I1_n,$	•			21	mA
		S = GND, CP = ~					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

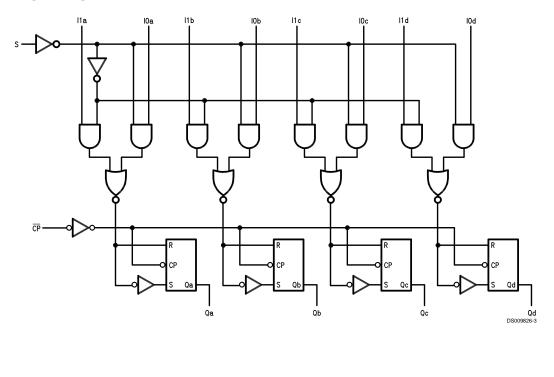
at V_{CC} = +5V and T_A = +25°C

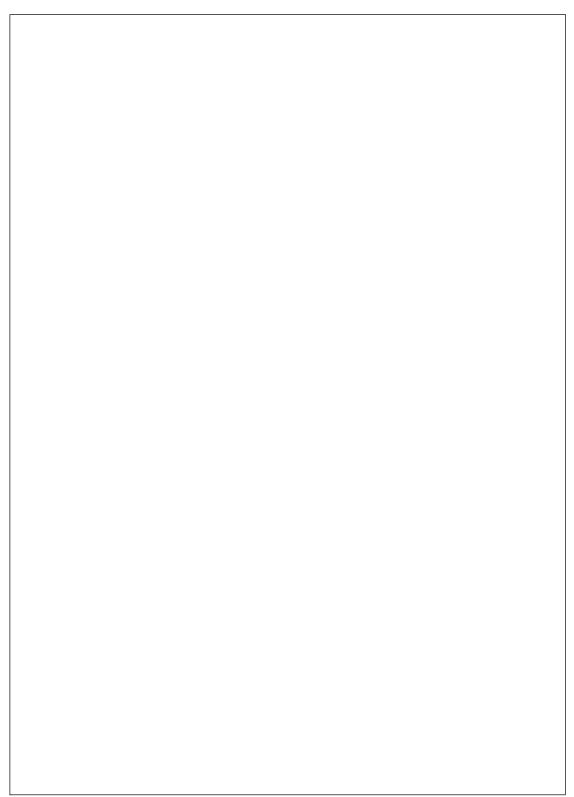
Symbol	Parameter	$R_L = 2 k\Omega$	Units		
		Min	Max	1	
t _{PLH}	Propagation Delay Time				
	Low to High Level Output		25	ns	
	\overline{CP} to Q_n				
t _{PHL}	Propagation Delay Time				
	High to Low Level Output		25	ns	
	CP to Q _n				

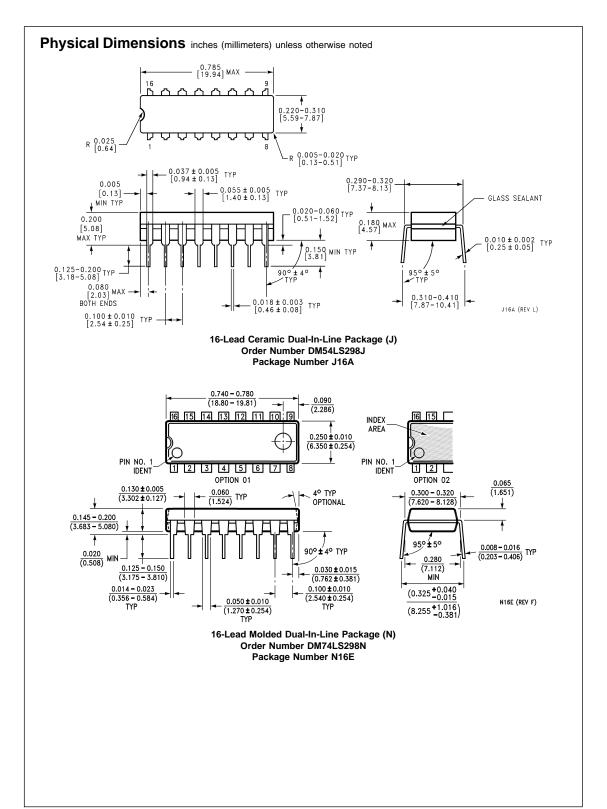
Functional Description

This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input (\overline{CP}) . The 4-bit output register is fully edge-triggered. The Data inputs (I_{nx}) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predictable

Truth Table


	Output		
S	I0 _x	I1 _x	Q _x
I	I	Х	L
- 1	h	X	Н
h	X	I	L
h	X	h	н


I = LOW Voltage Level one setup time prior to the HIGH-to-LOW clock tran-


sition. h = HIGH Voltage Level one setup time prior to the HIGH-to-LOW clock transsition.
H = HIGH Voltage Level
L = LOW Voltage Level

X = Immaterial

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number DM54LS298W NS Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com