DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CDP1802A 查看數據表(PDF) - Intersil

零件编号
产品描述 (功能)
生产厂家
CDP1802A
Intersil
Intersil Intersil
CDP1802A Datasheet PDF : 28 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
CDP1802A, CDP1802AC, CDP1802BC
The three paths, depending on the nature of the instruction,
may operate independently or in various combinations in the
same machine cycle.
With two exceptions, CPU instruction consists of two 8-
clock-pulse machine cycles. The first cycle is the fetch cycle,
and the second - and third if necessary - are execute cycles.
During the fetch cycle the four bits in the P designator select
one of the 16 registers R(P) as the current program counter.
The selected register R(P) contains the address of the mem-
ory location from which the instruction is to be fetched. When
the instruction is read out from the memory, the higher order
4 bits of the instruction byte are loaded into the register and
the lower order 4 bits into the N register. The content of the
program counter is automatically incremented by one so that
R(P) is now “pointing” to the next byte in the memory.
The X designator selects one of the 16 registers R(X) to
“point” to the memory for an operand (or data) in certain ALU
or I/O operations.
The N designator can perform the following five functions
depending on the type of instruction fetched:
1. Designate one of the 16 registers in R to be acted upon
during register operations.
2. Indicate to the I/O devices a command code or device
selection code for peripherals.
3. Indicate the specific operation to be executed during the
ALU instructions, types of test to be performed during the
Branch instruction, or the specific operation required in a
class of miscellaneous instructions (70 - 73 and 78 - 7B).
4. Indicate the value to be loaded into P to designate a new
register to be used as the program counter R(P).
5. Indicate the value to be loaded into X to designate a new
register to be used as data pointer R(X).
The registers in R can be assigned by a programmer in three
different ways: as program counters, as data pointers, or as
scratchpad locations (data registers) to hold two bytes of data.
Program Counters
Any register can be the main program counter; the address
of the selected register is held in the P designator. Other reg-
isters in R can be used as subroutine program counters. By
single instruction the contents of the P register can be
changed to effect a “call” to a subroutine. When interrupts
are being serviced, register R(1) is used as the program
counter for the user's interrupt servicing routine. After reset,
and during a DMA operation, R(0) is used as the program
counter. At all other times the register designated as pro-
gram counter is at the discretion of the user.
Data Pointers
The registers in R may be used as data pointers to indicate a
location in memory. The register designated by X (i.e., R(X))
points to memory for the following instructions (see Table 1).
1. ALU operations F1 - F5, F7, 74, 75, 77
2. Output instructions 61 through 67
3. Input instructions 69 through 6F
4. Certain miscellaneous instructions - 70 - 73, 78, 60, F0
The register designated by N (i.e., R(N)) points to memory
for the “load D from memory” instructions 0N and 4N and the
“Store D” instruction 5N. The register designated by P (i.e.,
the program counter) is used as the data pointer for ALU
instructions F8 - FD, FF, 7C, 7D, 7F. During these instruction
executions, the operation is referred to as “data immediate”.
Another important use of R as a data pointer supports the
built-in Direct-Memory-Access (DMA) function. When a
DMA-ln or DMA-Out request is received, one machine cycle
is “stolen”. This operation occurs at the end of the execute
machine cycle in the current instruction. Register R(0) is
always used as the data pointer during the DMA operation.
The data is read from (DMA-Out) or written into (DMA-ln) the
memory location pointed to by the R(0) register. At the end
of the transfer, R(0) is incremented by one so that the pro-
cessor is ready to act upon the next DMA byte transfer
request. This feature in the 1800-series architecture saves a
substantial amount of logic when fast exchanges of blocks of
data are required, such as with magnetic discs or during
CRT-display-refresh cycles.
Data Registers
When registers in R are used to store bytes of data, four
instructions are provided which allow D to receive from or
write into either the higher-order or lower-order byte portions
of the register designated by N. By this mechanism (together
with loading by data immediate) program pointer and data
pointer designations are initialized. Also, this technique
allows scratchpad registers in R to be used to hold general
data. By employing increment or decrement instructions,
such registers may be used as loop counters.
The Q Flip-Flop
An internal flip-flop, Q, can be set or reset by instruction and
can be sensed by conditional branch instructions. The output
of Q is also available as a microprocessor output.
3-21

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]