DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

HCPL-0723-060 查看數據表(PDF) - Avago Technologies

零件编号
产品描述 (功能)
生产厂家
HCPL-0723-060
AVAGO
Avago Technologies AVAGO
HCPL-0723-060 Datasheet PDF : 12 Pages
First Prev 11 12
Pulse-width distortion (PWD) is the difference between
tPHL and tPLH and often determines the maximum data
rate capability of a transmission system. PWD can be
expressed in percent by dividing the PWD (in ns) by the
minimum pulse width (in ns) being transmitted. Typically,
PWD on the order of 20-30% of the minimum pulse width
is tolerable.
Propagation delay skew, tPSK, is an important parameter
to consider in parallel data applica­tions where synchro-
nization of signals on parallel data lines is a concern. If
the parallel data is being sent through a group of opto-
couplers, differences in propagation delays will cause
the data to arrive at the outputs of the optocouplers at
different times. If this difference in propagation delay
is large enough it will determine the maximum rate at
which parallel data can be sent through the optocou-
plers.
Propagation delay skew is defined as the difference
between the minimum and maximum propagation
delays, either tPLH or tPHL, for any given group of opto-
couplers which are operating under the same conditions
(i.e., the same drive current, supply voltage, output load,
and operating temperature). As illustrated in Figure 10,
if the inputs of a group of optocouplers are switched
either ON or OFF at the same time, tPSK is the difference
between the shortest propagation delay, either tPLH or
tPHL, and the longest propagation delay, either tPLH or
tPHL.
VI
50%
VO
2.5 V,
CMOS
tPSK
As mentioned earlier, tPSK can determine the maximum
parallel data transmission rate. Figure 11 is the timing
diagram of a typical parallel data application with both
the clock and data lines being sent through the opto-
couplers. The figure shows data and clock signals at the
inputs and outputs of the optocouplers. In this case the
data is assumed to be clocked off of the rising edge of
the clock.
Propagation delay skew represents the uncertainty of
where an edge might be after being sent through an op-
tocoupler. Figure 11 shows that there will be uncertainty
in both the data and clock lines. It is important that these
two areas of uncertainty not overlap, otherwise the clock
signal might arrive before all of the data outputs have
settled, or some of the data outputs may start to change
before the clock signal has arrived. From these consid-
erations, the absolute minimum pulse width that can
be sent through optocouplers in a parallel application is
twice tPSK. A cautious design should use a slightly longer
pulse width to ensure that any additional uncertainty in
the rest of the circuit does not cause a problem.
The HCPL-7723/0723 optocouplers offer the advantage of
guaranteed specifications for propagation delays, pulse-
width distortion, and propagation delay skew over the
recommended temperature and power supply ranges.
DATA
INPUTS
CLOCK
VI
50%
VO
2.5 V,
CMOS
Figure 10. Timing diagram to illustrate propagation delay skew, tpsk.
DATA
OUTPUTS
CLOCK
tPSK
tPSK
Figure 11. Parallel data transmission example.
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0566EN
AV02-0643EN - February 26, 2013

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]