DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MCP1700T-1802ETO 查看數據表(PDF) - Microchip Technology

零件编号
产品描述 (功能)
生产厂家
MCP1700T-1802ETO
Microchip
Microchip Technology Microchip
MCP1700T-1802ETO Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
MCP1700
6.3 Voltage Regulator
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation, as a result of ground current, is small
enough to be neglected.
6.3.1 POWER DISSIPATION EXAMPLE
Package
Package Type = SOT-23
Input Voltage
VIN = 2.3V to 3.2V
LDO Output Voltages and Currents
VOUT = 1.8V
IOUT = 150 mA
Maximum Ambient Temperature
TA(MAX) = +40°C
Internal Power Dissipation
Internal Power dissipation is the product of the LDO
output current times the voltage across the LDO
(VIN to VOUT).
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)
PLDO = (3.2V - (0.97 x 1.8V)) x 150 mA
PLDO = 218.1 milli-Watts
Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction to ambient for the application. The thermal
resistance from junction to ambient (RθJA) is derived
from an EIA/JEDEC standard for measuring thermal
resistance for small surface mount packages. The EIA/
JEDEC specification is JESD51-7, “High Effective
Thermal Conductivity Test Board for Leaded Surface
Mount Packages”. The standard describes the test
method and board specifications for measuring the
thermal resistance from junction to ambient. The actual
thermal resistance for a particular application can vary
depending on many factors, such as copper area and
thickness. Refer to AN792, “A Method to Determine
How Much Power a SOT-23 Can Dissipate in an
Application”, (DS00792), for more information regarding
this subject.
TJ(RISE) = PTOTAL x RqJA
TJRISE = 218.1 milli-Watts x 230.0°C/Watt
TJRISE = 50.2°C
Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below.
DS21826B-page 14
TJ = TJRISE + TA(MAX)
TJ = 90.2°C
Maximum Package Power Dissipation at +40°C
Ambient Temperature
SOT-23 (230.0°C/Watt = RθJA)
PD(MAX) = (125°C - 40°C) / 230°C/W
PD(MAX) = 369.6 milli-Watts
SOT-89 (52°C/Watt = RθJA)
PD(MAX) = (125°C - 40°C) / 52°C/W
PD(MAX) = 1.635 Watts
TO-92 (131.9°C/Watt = RθJA)
PD(MAX) = (125°C - 40°C) / 131.9°C/W
PD(MAX) = 644 milli-Watts
6.4 Voltage Reference
The MCP1700 can be used not only as a regulator, but
also as a low quiescent current voltage reference. In
many microcontroller applications, the initial accuracy
of the reference can be calibrated using production test
equipment or by using a ratio measurement. When the
initial accuracy is calibrated, the thermal stability and
line regulation tolerance are the only errors introduced
by the MCP1700 LDO. The low cost, low quiescent
current and small ceramic output capacitor are all
advantages when using the MCP1700 as a voltage
reference.
Ratio Metric Reference
1 µA Bias
MCP1700
CIN
1 µF
VIN
VOUT
GND
COUT
1 µF
PIC®
Microcontroller
VREF
ADO
AD1
Bridge Sensor
FIGURE 6-2:
Using the MCP1700 as a
voltage reference.
6.5 Pulsed Load Applications
For some applications, there are pulsed load current
events that may exceed the specified 250 mA
maximum specification of the MCP1700. The internal
current limit of the MCP1700 will prevent high peak
load demands from causing non-recoverable damage.
The 250 mA rating is a maximum average continuous
rating. As long as the average current does not exceed
250 mA, pulsed higher load currents can be applied to
the MCP1700. The typical current limit for the
MCP1700 is 550 mA (TA +25°C).
© 2007 Microchip Technology Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]