DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADT7476ARQH 查看數據表(PDF) - ON Semiconductor

零件编号
产品描述 (功能)
生产厂家
ADT7476ARQH Datasheet PDF : 67 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
ADT7476
VID Code Monitoring
The ADT7476 has five dedicated voltage ID (VID code)
inputs. These are digital inputs that can be read back through
the VID/GPIO register (0x43) to determine the processor
voltage required or the system being used. Five VID code
inputs support VRM9.x solutions. In addition, Pin 21 (12 V
input) can be reconfigured as a sixth VID input to satisfy
future VRM requirements.
VID/GPIO Register (0x43)
[0] = VID0, reflects logic state of Pin 5.
[1] = VID1, reflects logic state of Pin 6.
[2] = VID2, reflects logic state of Pin 7.
[3] = VID3, reflects logic state of Pin 8.
[4] = VID4, reflects logic state of Pin 19.
[5] = VID5, reconfigurable 12 V input. This bit reads 0 when
Pin 21 is configured as the 12 V input. This bit reflects the
logic state of Pin 21 when the pin is configured as VID5.
VID Code Input Threshold Voltage
The switching threshold for the VID code inputs is
approximately 1.0 V. To enable future compatibility, it is
possible to reduce the VID code input threshold to 0.6 V.
Bit 6 (THLD) of the VID/GPIO register (0x43) controls the
VID input threshold voltage.
VID/GPIO Register (0x43)
[6] THLD = 0, VID switching threshold = 1.0 V,
VOL < 0.8 V, VIH > 1.7 V, VMAX = 3.3 V.
[6] THLD = 1, VID switching threshold = 0.6 V,
VOL < 0.4 V, VIH > 0.8 V, VMAX = 3.3 V.
Reconfiguring Pin 21 as VID5 Input
Pin 21 can be reconfigured as a sixth VID code input
(VID5) for VRM10 compatible systems. Because the pin is
configured as VID5, it is not possible to monitor a 12 V
supply.
Bit 7 of the VID/GPIO register (0x43) determines the
function of Pin 21. System or BIOS software can read the
state of Bit 7 to determine whether the system is designed to
monitor 12 V or a sixth VID input.
VID/GPIO Register (0x43)
[7] VIDSEL = 0, Pin 21 functions as a 12 V measurement
input. Software can read this bit to determine that there are
five VID inputs being monitored. Bit 5 of VID/GPIO
Register (0x43) always reads back 0. Bit 0 of Interrupt Status
Register 2 (0x42) reflects 12 V outoflimit measurements.
[7] VIDSEL = 1, Pin 21 functions as the sixth VID code
input (VID5). Software can read this bit to determine that
there are six VID inputs being monitored. Bit 5 of Register
0x43 reflects the logic state of Pin 21. Bit 0 of Interrupt
Status Register 2 (0x42) reflects VID code changes.
VID Code Change Detect Function
The ADT7476 has a VID code change detect function.
When Pin 21 is configured as the VID5 input, VID code
changes are detected and reported back by the ADT7476. Bit
0 of Interrupt Status Register 2 (0x42) is the 12 V/VC bit and
denotes a VID change when set. The VID code change bit is
set when the logic states on the VID inputs are different than
they were 11 ms previously. The change of VID code is used
to generate an SMBALERT interrupt. If an SMBALERT
interrupt is not required, Bit 0 of Interrupt Mask Register 2
(0x75), when set, prevents SMBALERTs from occurring on
VID code changes.
Interrupt Status Register 2 (0x42)
[0] 12 V/VC = 0, if Pin 21 is configured as VID5, Logic 0
denotes no change in VID code within the last 11 ms.
[0] 12 V/VC = 1, if Pin 21 is configured as VID5, Logic 1
means that a change has occurred on the VID code inputs
within the last 11 ms. An SMBALERT is generated, if this
function is enabled.
Programming the GPIOs
The ADT7476 follows an upgrade path from the ADM1027
to the ADT7476. In order to maintain consistency between
versions, it is necessary to omit references to GPIO5. As a
result, there are six GPIOs as follows: GPIO0, GPIO1, GPIO2,
GPIO3, GPIO4, and GPIO6.
Setting Bit 4 of Configuration Register 5 (0x7C) to 1
enables GPIO functionality. This turns all pins configured as
VID inputs into generalpurpose outputs. Writing to the
corresponding VID bit in the VID/GPIO register (0x43) sets
the polarity for the corresponding GPIO. GPIO6 can be
programmed independently as, for example, an input or
output, using Bits [3:2] of Configuration Register 5 (0x7C).
Temperature Measurement Method
Local Temperature Measurement
The ADT7476 contains an onchip band gap temperature
sensor whose output is digitized by the onchip, 10bit
ADC. The 8bit MSB temperature data is stored in the
temperature registers (Addresses 0x25, 0x26, and 0x27).
Because both positive and negative temperatures can be
measured, the temperature data is stored in Offset 64 format
or twos complement format, as shown in Table 6 and
Table 7. Theoretically, the temperature sensor and ADC can
measure temperatures from 63°C to +127°C (or 61°C to
+191°C in the extended temperature range) with a resolution
of 0.25°C. However, this exceeds the operating temperature
range of the device, so local temperature measurements
outside the ADT7476 operating temperature range are not
possible.
http://onsemi.com
16

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]