DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LM2576T 查看數據表(PDF) - Motorola => Freescale

零件编号
产品描述 (功能)
生产厂家
LM2576T Datasheet PDF : 28 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LM2576
Thermal Analysis and Design
The following procedure must be performed to determine
whether or not a heatsink will be required. First determine:
1. PD(max) maximum regulator power dissipation in the
application.
2. TA(max) maximum ambient temperature in the
application.
3. TJ(max) maximum allowed junction temperature
(125°C for the LM2576). For a conservative
design, the maximum junction temperature
should not exceed 110°C to assure safe
operation. For every additional +10°C
temperature rise that the junction must
withstand, the estimated operating lifetime of
the component is halved.
4. RθJC
5. RθJA
package thermal resistance junction–case.
package thermal resistance junction–ambient.
(Refer to Absolute Maximum Ratings on page 2 of this data
sheet or RθJC and RθJA values).
The following formula is to calculate the approximate total
power dissipated by the LM2576:
PD = (Vin x IQ) + d x ILoad x Vsat
where d is the duty cycle and for buck converter
+ + d
ton
T
VO
Vin
,
IQ (quiescent current) and Vsat can be found in the
LM2576 data sheet,
Vin is minimum input voltage applied,
VO is the regulator output voltage,
ILoad is the load current.
The dynamic switching losses during turn–on and turn–off
can be neglected if proper type catch diode is used.
Packages Not on a Heatsink (Free–Standing)
For a free–standing application when no heatsink is used,
the junction temperature can be determined by the following
expression:
TJ = (RθJA) (PD) + TA
where (RθJA)(PD) represents the junction temperature rise
caused by the dissipated power and TA is the maximum
ambient temperature.
Packages on a Heatsink
If the actual operating junction temperature is greater than
the selected safe operating junction temperature determined
in step 3, than a heatsink is required. The junction
temperature will be calculated as follows:
where
TJ = PD (RθJA + RθCS + RθSA) + TA
RθJC is the thermal resistance junction–case,
RθCS is the thermal resistance case–heatsink,
RθSA is the thermal resistance heatsink–ambient.
If the actual operating temperature is greater than the
selected safe operating junction temperature, then a larger
heatsink is required.
Some Aspects That can Influence Thermal Design
It should be noted that the package thermal resistance and
the junction temperature rise numbers are all approximate,
and there are many factors that will affect these numbers,
such as PC board size, shape, thickness, physical position,
location, board temperature, as well as whether the
surrounding air is moving or still.
Other factors are trace width, total printed circuit copper
area, copper thickness, single– or double–sided, multilayer
board, the amount of solder on the board or even colour of
the traces.
The size, quantity and spacing of other components on
the board can also influence its effectiveness to dissipate
the heat.
Figure 26. Inverting Buck–Boost Develops –12 V
12 to 40 V
Unregulated
DC Input
Cin
100 µF
Feedback
+Vin
LM2576–12
1
4
L1
Output 68 µH
3 Gnd
2
5 ON/OFF D1
1N5822
Cout
2200 µF
–12 V @ 0.7 A
Regulated
Output
ADDITIONAL APPLICATIONS
Inverting Regulator
An inverting buck–boost regulator using the LM2576–12 is
shown in Figure 26. This circuit converts a positive input
voltage to a negative output voltage with a common ground
by bootstrapping the regulators ground to the negative output
voltage. By grounding the feedback pin, the regulator senses
the inverted output voltage and regulates it.
In this example the LM2576–12 is used to generate a
–12 V output. The maximum input voltage in this case
cannot exceed +28 V because the maximum voltage
appearing across the regulator is the absolute sum of the
input and output voltages and this must be limited to a
maximum of 40 V.
This circuit configuration is able to deliver approximately
0.7 A to the output when the input voltage is 12 V or higher. At
lighter loads the minimum input voltage required drops to
approximately 4.7 V, because the buck–boost regulator
topology can produce an output voltage that, in its absolute
value, is either greater or less than the input voltage.
18
MOTOROLA ANALOG IC DEVICE DATA

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]