DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ISL3179E 查看數據表(PDF) - Renesas Electronics

零件编号
产品描述 (功能)
生产厂家
ISL3179E Datasheet PDF : 18 Pages
First Prev 11 12 13 14 15 16 17 18
ISL3179E, ISL3180E
Application Information
RS-485 and RS-422 are differential (balanced) data
transmission standards for use in long haul or noisy
environments. RS-422 is a subset of RS-485, so RS-485
transceivers are also RS-422 compliant. RS-422 is a
point-to-multipoint (multidrop) standard, which allows only one
driver and up to 10 receivers on each bus, assuming one unit
load devices. RS-485 is a true multipoint standard, which allows
up to 32 one unit load devices (any mix of drivers and receivers)
on each bus. To allow for multipoint operation, the RS-485
specification requires that drivers must handle bus contention
without sustaining any damage.
Another important advantage of RS-485 is the extended
common-mode range (CMR), which specifies that the driver
outputs and receiver inputs withstand signals that range from
+12V to -7V. RS-422 and RS-485 are intended for cable lengths
as long as 4000ft (~1200m), so the wide CMR is necessary to
handle ground potential differences, as well as voltages induced
in the cable by external fields.
Receiver (Rx) Features
This transceiver utilizes a differential input receiver for maximum
noise immunity and common-mode rejection. Input sensitivity is
±200mV, as required by the RS-422 and RS-485 specifications.
Receiver inputs function with common-mode voltages as great
as +9/-7V outside the power supplies (+12V and -7V), making
them ideal for long networks, or industrial environments, where
induced voltages are a realistic concern.
The receiver input resistance of 50kΩ surpasses the RS-422
specification of 4kΩ, and is five times the RS-485 “Unit Load”
(UL) requirement of 12kΩ minimum. Thus, the ISL3179E is
known as a “one-fifth UL” transceiver, and there can be up to 160
devices on the RS-485 bus while still complying with the RS-485
loading specification.
The receiver is a “full fail-safe” version that guarantees a high
level receiver output if the receiver inputs are unconnected
(floating), shorted together, or connected to a terminated bus
with all the transmitters disabled (terminated/undriven).
Rx outputs deliver large low state currents (typically 28mA at
VOL = 1V) to ease the design of optically coupled isolated
networks.
Receivers easily meet the 40Mbps data rate supported by the
driver, and the receiver output is tri-statable through the active
low RE input.
Driver (Tx) Features
The RS-485/RS-422 driver is a differential output device that
delivers at least 1.5V across a 54Ω load (RS-485), and at least 2V
across a 100Ω load (RS-422). The drivers feature low
propagation delay skew to maximize bit width and to minimize
EMI.
Driver outputs are not slew rate limited, so faster output
transition times allow data rates of at least 40Mbps. Driver
outputs are tri-statable through the active high DE input.
FN6365 Rev. 6.00
Nov 9, 2017
For parallel applications, bit-to-bit skews between any two
transmitter and receiver pairs are guaranteed to be no worse
than 8ns (4ns max for any two Tx, 4ns max for any two Rx).
ESD Protection
All pins on the ISL3179E include Class 3 (>9kV) Human Body
Model (HBM) ESD protection structures, but the RS-485 pins
(driver outputs and receiver inputs) incorporate advanced
structures allowing them to survive ESD events in excess of
±16.5kV HBM (ISL3179E) or ±12kV HBM (ISL3180E), and
±16.5kV (ISL3179E) or ±4kV (ISL3180E) IEC61000-4-2. The
RS-485 pins are particularly vulnerable to ESD strikes because
they typically connect to an exposed port on the exterior of the
finished product. Simply touching the port pins, or connecting a
cable, can cause an ESD event that can destroy unprotected
ICs. These new ESD structures protect the device whether or not
it is powered up, and without degrading the RS-485
common-mode range of -7V to +12V. This built-in ESD
protection eliminates the need for board level protection
structures (for example, transient suppression diodes) and the
associated, undesirable capacitive load they present.
IEC61000-4-2 Testing
The IEC61000 test method applies to finished equipment, rather
than to an individual IC. Therefore, the pins most likely to suffer
an ESD event are those that are exposed to the outside world (the
RS-485 pins in this case), and the IC is tested in its typical
application configuration (power applied) rather than testing
each pin-to-pin combination. The IEC61000 standard’s lower
current limiting resistor coupled with the larger charge storage
capacitor yields a test that is much more severe than the HBM
test. The extra ESD protection built into the ISL3179E’s RS-485
pins allows the design of equipment meeting Level 4 criteria
without the need for additional board level protection on the
RS-485 port.
AIR-GAP DISCHARGE TEST METHOD
For this test method, a charged probe tip moves toward the IC pin
until the voltage arcs to it. The current waveform delivered to the
IC pin depends on approach speed, humidity, temperature, etc.,
so it is more difficult to obtain repeatable results. The ISL3179E
RS-485 pins withstand ±16.5kV air-gap discharges, while the
ISL3180E RS-485 pins withstand ±4kV.
CONTACT DISCHARGE TEST METHOD
During the contact discharge test, the probe contacts the tested
pin before the probe tip is energized, thereby eliminating the
variables associated with the air-gap discharge. The result is a
more repeatable and predictable test, but equipment limits
prevent testing devices at voltages higher than ±9kV. The RS-485
pins of the ISL3179E survive ±9kV contact discharges, while the
ISL3180E’s RS-485 pins withstand ±5kV.
Hot Plug Function
When a piece of equipment powers up, a period of time occurs in
which the processor or ASIC driving the RS-485 control lines (DE,
RE) is unable to ensure that the RS-485 Tx and Rx outputs are
kept disabled. If the equipment is connected to the bus, a driver
activating prematurely during power-up may crash the bus. To
avoid this scenario, the ISL3179E and ISL3180E incorporate a
Page 12 of 18

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]