DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY14B256KA-SP25XI(2009) 查看數據表(PDF) - Cypress Semiconductor

零件编号
产品描述 (功能)
生产厂家
CY14B256KA-SP25XI
(Rev.:2009)
Cypress
Cypress Semiconductor Cypress
CY14B256KA-SP25XI Datasheet PDF : 26 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
CY14B256KA
Data Protection
The CY14B256KA protects data from corruption during low
voltage conditions by inhibiting all externally initiated STORE
and write operations. The low voltage condition is detected when
VCC is less than VSWITCH. If the CY14B256KA is in a write mode
(both CE and WE are LOW) at power up, after a RECALL or
STORE, the write is inhibited until the SRAM is enabled after
tLZHSB (HSB to output active). This protects against inadvertent
writes during power up or brown out conditions.
Noise Considerations
Refer to CY application note AN1064.
Real Time Clock Operation
nvTIME Operation
The CY14B256KA offers internal registers that contain clock,
alarm, watchdog, interrupt, and control functions. Internal double
buffering of the clock and timer information registers prevents
accessing transitional internal clock data during a read or write
operation. Double buffering also circumvents disrupting normal
timing counts or the clock accuracy of the internal clock when
accessing clock data. Clock and alarm registers store data in
BCD format.
RTC functionality is described in the following sections. The RTC
register addresses for CY14B256KA range from 0x7FF0 to
0x7FFF. Refer to Table 3 on page 12 and Table 4 on page 13 for
a detailed Register Map description.
Clock Operations
The clock registers maintain time up to 9,999 years in one
second increments. The time can be set to any calendar time and
the clock automatically keeps track of days of the week and
month, leap years, and century transitions. There are eight
registers dedicated to the clock functions, which are used to set
time with a write cycle and to read time during a read cycle.
These registers contain the time of day in BCD format. Bits
defined as ‘0’ are currently not used and are reserved for future
use by Cypress.
Reading the Clock
The double buffered RTC register structure reduces the chance
of reading incorrect data from the clock. Stop internal updates to
the CY14B256KA time keeping registers before reading clock
data, to prevent reading of data in transition. Stopping the
register updates does not affect clock accuracy.
The updating process is stopped by writing a ‘1’ to the read bit
‘R’ (in the flags register at 0x7FF0), and does not restart until a
‘0’ is written to the read bit. The RTC registers are then read while
the internal clock continues to run. After a ‘0’ is written to the read
bit (‘R’), all RTC registers are simultaneously updated within
20 ms.
Setting the Clock
Setting the write bit ‘W’ (in the flags register at 0x7FF0) to a ‘1’
stops updates to the time keeping registers and enables the time
to be set. The correct day, date, and time is then written into the
registers and must be in 24-hour BCD format. The time written
is referred to as the “Base Time”. This value is stored in nonvol-
atile registers and used in the calculation of the current time.
Resetting the write bit to ‘0’ transfers the values of timekeeping
registers to the actual clock counters, after which the clock
resumes normal operation.
If the time written to the timekeeping registers is not in the correct
BCD format, each invalid nibble of the RTC registers continue
counting to 0xF before rolling over to 0x0 after which RTC
resumes normal operation.
Note The values entered in the timekeeping, alarm, calibration,
and interrupt registers need a STORE operation to be saved in
nonvolatile memory. Therefore, while working in AutoStore
disabled mode, the user must perform a STORE operation after
writing into the RTC registers for the RTC to work correctly.
Backup Power
The RTC in the CY14B256KA is intended for permanently
powered operation. The VRTCcap or VRTCbat pin is connected
depending on whether a capacitor or battery is chosen for the
application. When the primary power, VCC, fails and drops below
VSWITCH the device switches to the backup power supply.
The clock oscillator uses very little current, which maximizes the
backup time available from the backup source. Regardless of the
clock operation with the primary source removed, the data stored
in the nvSRAM is secure, having been stored in the nonvolatile
elements when power was lost.
During backup operation, the CY14B256KA consumes 0.35
microamps (Typ) at room temperature. The user must choose
capacitor or battery values according to the application.
Backup time values based on maximum current specifications
are shown in the following table. Nominal backup times are
approximately two times longer.
Table 2. RTC Backup Time
Capacitor Value
0.1F
0.47F
1.0F
Backup Time
72 hours
14 days
30 days
Using a capacitor has the obvious advantage of recharging the
backup source each time the system is powered up. If a battery
is used, a 3V lithium is recommended and the CY14B256KA
sources current only from the battery when the primary power is
removed. However, the battery is not recharged at any time by
the CY14B256KA. The battery capacity must be chosen for total
anticipated cumulative down time required over the life of the
system.
Document #: 001-55720 Rev. *A
Page 8 of 26
[+] Feedback

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]