DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

M88 查看數據表(PDF) - STMicroelectronics

零件编号
产品描述 (功能)
生产厂家
M88 Datasheet PDF : 7 Pages
1 2 3 4 5 6 7
M88 FAMILY
The JTAG Serial Interface block allows In-System
Programming (ISP). Embedded dual-bank
memories eliminates the need for an external Boot
EPROM or Flash memory, or an external
programmer. To simplify Flash memory updates,
program execution is performed from a secondary
Flash memory (for the M88xxF2x) or EEPROM
(for the M8813F1x) while the primary Flash
memory is being updated. This solution avoids the
complicated hardware and software overhead
necessary to implement IAP.
ST makes available a software development tool,
PSDsoft, that generates ANSI-C compliant code
for use with your target MCU. This code allows you
to manipulate the non-volatile memory (NVM)
within the FLASH+PSD. Code examples are also
provided for:
– Flash memory IAP via the UART of the host
MCU
– Memory paging to execute code across several
FLASH+PSD memory pages
– Loading, reading, and manipulation of
FLASH+PSD Macrocells by the MCU.
FLASH+PSD ARCHITECTURAL OVERVIEW
FLASH+PSD devices contain several major
functional blocks. Figure 3 shows the architecture
of the M88 FLASH+PSD device family. The
functions of each block are described briefly in the
following sections. Many of the blocks perform
multiple functions and are user configurable.
Memory
The 1 or 2 Mbit (128K x 8, or 256K x 8) Flash
memory is the primary memory of the
FLASH+PSD. It is divided into eight equally-sized
sectors that are individually selectable.
The 256 Kbit (32K x 8) secondary EEPROM or
Flash memory is divided into four equally-sized
sectors. Each sector is individually selectable.
The SRAM is intended for use as a scratch-pad
memory or as an extension to the MCU SRAM. If
an external battery is connected to Voltage Stand-
by (VSTBY, PC2), data is retained in the event of
power failure.
Each sector of memory can be located in a
different address space as defined by the user.
The access times for all memory types includes
the address latching and DPLD decoding time.
The M8813F1x has 64 bytes of OTP memory for
product identifiers, serial numbers, calibration
constants, etc..
Page Register
The 8-bit Page Register expands the address
range of the MCU by up to 256 times. The paged
address can be used as part of the address space
to access external memory and peripherals, or
internal memory and I/O. The Page Register can
also be used to change the address mapping of
sectors of the Flash memories into different
memory spaces for IAP.
PLDs
The device contains two PLDs, the Decode PLD
(DPLD) and the Complex PLD (CPLD), each
optimized for a different function, as shown in
Table 3. The functional partitioning of the PLDs
reduces power consumption, optimizes cost/
performance, and eases design entry.
The DPLD is used to decode addresses and to
generate Sector Select signals for the
FLASH+PSD internal memory and registers. The
DPLD has 17 combinatorial outputs, which are
used to select memory sectors and JTAG. The
CPLD has 16 Output Macrocells (OMC) and 3
combinatorial outputs. The CPLD also has 24
Input Macrocells (IMC) that can be configured as
inputs to the PLDs. The PLDs receive their inputs
from the PLD Input Bus and are differentiated by
their output destinations, number of product terms,
and Macrocells.
The PLDs consume minimal power. The speed
and power consumption of the PLD is controlled
by the Turbo bit in the PMMR0 register and other
bits in the PMMR2 registers. These registers are
set by the MCU at run-time. There is a slight
penalty to PLD propagation time when invoking
the power management features.
I/O Ports
The FLASH+PSD has 27 individually configurable
I/O pins distributed over the four ports (Port A, B,
C, and D). Each I/O pin can be individually
configured for different functions. Ports can be
configured as standard MCU I/O ports, PLD I/O, or
latched address outputs for MCUs using
multiplexed address/data buses. Ports A and B
can be configured to be open drain.
The JTAG pins can be enabled on Port C for In-
System Programming (ISP).
Ports A and B can also be configured as a data
port for a non-multiplexed bus or multiplexed
address/data bus for certain types of 8-bit MCUs.
MCU Bus Interface
FLASH+PSD interfaces easily with most 8-bit
MCUs that have either multiplexed or non-
multiplexed address/data buses. The device is
configured to respond to the MCU’s control
signals, which are also used as inputs to the PLDs.
Where there is a requirement to use a 16-bit data
bus to interface to a 16-bit MCU, two PSDs must
be used. For examples, please see the full data
sheet.
4/7

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]