DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MMA1252 查看數據表(PDF) - Freescale Semiconductor

零件编号
产品描述 (功能)
生产厂家
MMA1252
Freescale
Freescale Semiconductor Freescale
MMA1252 Datasheet PDF : 10 Pages
1 2 3 4 5 6 7 8 9 10
PRINCIPLE OF OPERATION
The Freescale accelerometer is a surface-micromachined
integrated-circuit accelerometer.
The device consists of a surface micromachined
capacitive sensing cell (g-cell) and a CMOS signal
conditioning ASIC contained in a single integrated circuit
package. The sensing element is sealed hermetically at the
wafer level using a bulk micromachined “cap'' wafer.
The g-cell is a mechanical structure formed from
semiconductor materials (polysilicon) using semiconductor
processes (masking and etching). It can be modeled as two
stationary plates with a moveable plate in-between. The
center plate can be deflected from its rest position by
subjecting the system to an acceleration (Figure 3).
When the center plate deflects, the distance from it to one
fixed plate will increase by the same amount that the distance
to the other plate decreases. The change in distance is a
measure of acceleration.
The g-cell plates form two back-to-back capacitors
(Figure 4). As the center plate moves with acceleration, the
distance between the plates changes and each capacitor's
value will change, (C = A/D). Where A is the area of the
plate, is the dielectric constant, and D is the distance
between the plates.
The CMOS ASIC uses switched capacitor techniques to
measure the g-cell capacitors and extract the acceleration
data from the difference between the two capacitors. The
ASIC also signal conditions and filters (switched capacitor)
the signal, providing a high level output voltage that is
ratiometric and proportional to acceleration.
Acceleration
SPECIAL FEATURES
Filtering
The Freescale accelerometers contain an onboard 2-pole
switched capacitor filter. A Bessel implementation is used
because it provides a maximally flat delay response (linear
phase) thus preserving pulse shape integrity. Because the
filter is realized using switched capacitor techniques, there is
no requirement for external passive components (resistors
and capacitors) to set the cutoff frequency.
Self-Test
The sensor provides a self-test feature that allows the
verification of the mechanical and electrical integrity of the
accelerometer at any time before or after installation. This
feature is critical in applications such as automotive airbag
systems where system integrity must be ensured over the life
of the vehicle. A fourth “plate'' is used in the g-cell as a self-
test plate. When the user applies a logic high input to the self-
test pin, a calibrated potential is applied across the self-test
plate and the moveable plate. The resulting electrostatic
force
Fe
=
1--
2
A
-Vd---2-2-
causes
the
center
plate
to
deflect.
The resultant deflection is measured by the accelerometer's
control ASIC and a proportional output voltage results. This
procedure assures that both the mechanical (g-cell) and
electronic sections of the accelerometer are functioning.
Status
Freescale accelerometers include fault detection circuitry
and a fault latch. The Status pin is an output from the fault
latch, OR'd with self-test, and is set high whenever the
following event occurs:
• Parity of the EPROM bits becomes odd in number.
The fault latch can be reset by a rising edge on the self-test
input pin, unless one (or more) of the fault conditions
continues to exist.
Figure 3. Transducer
Physical Model
Figure 4. Equivalent
Circuit Model
MMA1252
4
Sensors
Freescale Semiconductor, Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]