DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MMFT107T1 查看數據表(PDF) - ON Semiconductor

零件编号
产品描述 (功能)
生产厂家
MMFT107T1
ON-Semiconductor
ON Semiconductor ON-Semiconductor
MMFT107T1 Datasheet PDF : 7 Pages
1 2 3 4 5 6 7
MMFT107T1
160
140
°
120
100
Board Material = 0.0625
G-10/FR-4, 2 oz Copper
0.8 Watts
1.25 Watts*
TA = 25°C
1.5 Watts
*Mounted on the DPAK footprint
80
0.0
0.2
0.4
0.6
0.8
1.0
A, Area (square inches)
Figure 9. Thermal Resistance versus Collector
Pad Area for the SOT-223 Package (Typical)
Another alternative would be to use a ceramic substrate
or an aluminum core board such as Thermal Cladt. Using
a board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the same
footprint.
SOLDER STENCIL GUIDELINES
Prior to placing surface mount components onto a printed
circuit board, solder paste must be applied to the pads. A
solder stencil is required to screen the optimum amount of
solder paste onto the footprint. The stencil is made of brass
or stainless steel with a typical thickness of 0.008 inches.
The stencil opening size for the SOT-223 package should
be the same as the pad size on the printed circuit board, i.e.,
a 1:1 registration.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference should be a maximum of 10°C.
The soldering temperature and time should not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient should be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and
result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied
during cooling
* * Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
http://onsemi.com
5

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]