DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

AT88SC1003 查看數據表(PDF) - Atmel Corporation

零件编号
产品描述 (功能)
生产厂家
AT88SC1003 Datasheet PDF : 30 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
Table 3. Memory Zones (Continued)
Zone
Definition
Application Zone 2
AZ2 (256 bits)
AZ2 is intended to hold user application data. P2 (address 480) controls write access and R2
(address 481) controls read access within Zone 2. In Security Level 1, erasing AZ2 is accomplished
by performing an erase operation on any bit within AZ2, after verification of the security code (SV flag
= 1). This operation will erase the entire zone. In Security Level 2, erase operations are controlled by
the erase key EZ2, the erase counter EC2, and the EC2EN fuse. If the EC2EN fuse is set to “1”, then
the erase counter made for Application Zone 2 is enabled, and the user is limited to 128 erase
operations on AZ2. If the EC2EN fuse is set to “0”, then the erase counter mode is disabled and there
is no limit to the number of erase operations on AZ2. The EC2EN fuse must be written during the
personalization phase (Security Level 1). After the issuer fuse is blown, the status of the EC2EN fuse
cannot be changed. See the erase definition in Table 9 on page 15 for specific details about erase
procedure. In Security Level 1, write operations in AZ2 may be performed on single bits after
verification of the secure code. In Security Level 2, the P2 bit must also be set to “1” to allow single bit
write operations. Read operations in Security Levels 1 and 2 are allowed if either R2 is set to “1” or the
SV flag is set to “1” by validating the secure code.
Application Zone 2
Erase Key EZ2
(32 bits)
The erase keys are passwords used to control erase operations within application zones after the
issuer fuse has been blown (Security Level 2). The erase key password is written during
personalization (Security Level 1), after verification of the security code. EZ2 cannot be changed after
the issuer fuse is blown. In Security Level 2, AZ2 can be erased only after both the security code and
the EZ2 password have been validated. Verification of EZ2 will set the internal flag E2 to “1”.
Application Zone 2
Erase Counter EC2
(128 bits)
The erase counter (EC2) is enabled only in Security Mode 2 and only when the EC2EN fuse is set to
“1”. If both of these conditions are true, the user will be limited to 128 erase operations in Application
Zone 2. EC2 is used to count these erase cycles. The erase protocol for AZ2 requires one bit in EC2
to be written to a “0”. After 128 erase operations in AZ2, all 128 bits in EC2 will be “0” and the user will
be blocked from erasing AZ2. The erase counter is only writeable and cannot be erased. When the
EC2EN fuse = “0”, the EC2 operation is disabled. In that case there is no limit to the number of times
the AZ2 can be erased, and EC2 has no function.
Memory Test Zone
MTZ (16 bits)
All operations are allowed for this zone (write, erase, read). The purpose of this zone is to provide an
area in the product memory that is not restricted by security logic. It is used for testing purposes
during the manufacturing process and may also be used in the product application if desired, although
no security protection exists for the MTZ.
Manufacturer’s Zone
MFZ (64 bits)
The MFZ is intended to hold data specific to the smart card manufacturer (like assembly lot codes,
dates, etc.). Read operations within this zone are always allowed. Write or erase operations within this
zone are allowed after the security code has been verified. After the data is entered by the card
manufacturer, the manufacturer’s fuse can be blown and the data within the MFZ will become read-
only. Blowing the issuer fuse will also lock the data in the MFZ.
EC2EN Fuse
(4 bits)
This single bit EEPROM fuse selects whether the EC2 counter is used to limit the number of AZ2
erases in Security Mode 2. If the EC2EN fuse is unblown (“1”), the number of erases of AZ2 is limited
to 128. If the EC2EN fuse is blown (“0”), there is no limit to the number of erase operations in AZ2.
After the issuer fuse is blown, the state of the EC2EN fuse is locked and cannot be changed.
Issuer Fuse
(16 bits)
This EEPROM bit functions as a fuse that is used to change the security mode of the AT88SC1003
from Security Mode 1 (“1”), to Security Mode 2 (“0”). Initialization of the IC for use by the end
customer occurs in Security Mode 1. Access conditions in Security Mode 1 are described in Table 6
on page 12. Access conditions in Security Mode 2 are described in Table 7 on page 13.
6 AT88SC1003
2035B–SMEM–08/03

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]